Lunar libration: what it is and how to photograph it

A guide to libration of the Moon, and how to capture contrasting images that reveal the ‘extra’ areas at the Moon’s edges.

Thanks to lunar libration we can observe slightly more than half of the Moon’s surface. Credit: Pete Lawrence

The Moon is gravitationally locked to Earth, rotating once on its axis in the same period of time that it takes to orbit our planet. For us on the ground, this means we see the same familiar face of the Moon all the time. There is, however, a small variation in the Moon’s appearance over time, due to an effect called ‘libration’.


Lunar libration describes the cumulative effects introduced by the elliptical nature of the Moon’s orbit and its tilt relative to the orbit of Earth.

Read more Moon guides:

The mechanics of the Moon’s orbit

The Moon’s elliptical orbit means that its orbital speed around Earth varies over time. When it’s closest to our planet at perigee its speed is highest, and when it’s furthest from Earth at apogee its orbital speed is at its lowest.

This variation allows us a peek around the eastern and western limbs of the Moon over time.

The Moon’s orbit is tilted to that of Earth by about 5˚ too, causing the Moon to appear to move above and below the ecliptic.

As it does so, we effectively peek over the southern and northern edge of the Moon by a small amount. Together, these libration effects allow us to see 59% of the Moon’s surface, which is 9% more than if the Moon were rigidly locked to Earth.

One good way to see libration is to look for the elliptical sea known as Mare Crisium (one of many lunar maria), close to the Moon’s northeast limb. At extreme librations, this can look close to the Moon’s limb or quite far away.

Mare Crisium Credit: NASA / Lunar Reconnaissance Orbiter
Mare Crisium, captured by the Lunar Reconnaissance Orbiter. Credit: NASA / Lunar Reconnaissance Orbiter

How to photograph lunar libration

By capturing images of two different moons you can see the differences in the positions of features caused by libration.

October is a perfect opportunity to try this as there are two full Moons; the first rises at 19:15 BST (18:15 UT) on 1 October and it should be possible to get a decent shot from 21:00 BST (20:00 UT). The second is on 31 October, rising around 17:00 UT and favourable from 19:00 UT.

Once you’ve grabbed images of both, you can overlay them so that the features almost line up – they won’t precisely because of libration.

The variation can be highlighted in a number of ways. For example, placing both images side by side, the minor differences in positions of features should be noticeable.

A more dramatic method is to create an animated image which flicks between both versions.

The visibility of libration on a large scale (eg, in a full disc image) depends on the variance between latitude and longitude libration values over the comparison period.

Another more ambitious project can be achieved by attempting to photograph every phase of the Moon over a month.

If you’re imaging from the UK, probably the biggest hurdle to overcome is the British weather. You would have to be very lucky to be able to catch one phase every day over a month, but it may be possible to grab shorter sequences that still show the effects of libration.

Imaging lunar libration: step-by-step

Recommended equipment: 1,000mm focal length telescope, DSLR camera or equivalent

Step 1

How to photograph lunar libration

Plan your shots; the best results will be achieved if you capture photographs under similar conditions. Select a time when the sky will be dark, as this will provide maximum contrast, but also removes any variation in appearance caused by blue or twilight-lit background skies.

Step 2

How to photograph lunar libration

Select the right focal length for the task; an optimum setup is one that clearly shows lunar features beyond just the dark seas. A telescope with a 1,000mm focal length will work well with a DSLR or MILC-type camera. Alternatively, a narrower field of view can be used to create a large-scale mosaic.

Step 3

How to photograph lunar libration

For mosaic shots, we’d recommend using a setup that includes a high frame rate camera. A mono camera paired with a red or infrared pass filter can also help keep features nice and sharp. Don’t be overly ambitious: limit the overlapping mosaic panels to a maximum of nine; even two or four should suffice.

Step 4

How to photograph lunar libration

Process your images to the best of your ability and aim to produce natural-looking discs without over-exposed (white) or under-exposed (black) regions. Sharpen the disc to crispen up features, but take care not to overdo things; it helps to load both full Moon images at once and apply the same level of processing to each.

Step 5

How to photograph lunar libration

Load both images into a layer-based image editor as separate layers. Make the upper layer semi-transparent and adjust the sizes so the disc edges match. Don’t worry about feature orientation at this point; crop/adjust the canvas size so the image is square, with the centre of the Moon’s disc in the centre of frame. 

Step 6

How to photograph lunar libration

With the upper layer still transparent, rotate it so the dark crater Grimaldi appears close in both versions. Make the upper layer opaque and increase canvas width by 200%, placing both discs side by side. Alternatively, if your program allows it, create a 1-sec flick book-style animated GIF which switches between both versions.

Have you managed to observe or even photograph lunar libration? Let us know by emailing, or get in touch via Facebook, Twitter or Instagram.


Pete Lawrence is an experienced lunar observer and astrophotographer. This guide originally appeared in the October 2020 issue of BBC Sky at Night Magazine.